Basic Process Control System (BPCS) Reliability in Risk Analysis

Florin Omota, CFSE

FLUOR_®

AIChE NL/B Lecture Dinner Meeting Zoetermeer, 29-Feb-2024

About Presenter

Florin Omota

- 12 years experience in chemical industry
- 6 years research at UvA, PhD Chem. Eng.

Process Engineering Manager at Fluor B.V.

- 18 years experience in process design, control, safety & optimization
- Fluor Fellow in Process Control & Functional Safety
- Subject Matter Expert Process Control FLUOR
- Certified Functional Safety Expert EXIDA

E-mail: Florin.Omota@Fluor.com

About Fluor

One of the World's Largest Publicly-Traded EPCM Companies Engineering Solutions to Meet the Most Complex Challenges

Ma'aden Umm Wu'al Phosphate Project - Saudi Arabia

- Technology consultation
- Design incubation
- Conceptual engineering studies
- Independent design reviews
- Front-end engineering & design (FEED)
- Energy transition licensed technology
- Advanced process modeling
- Advanced modularization
- Value engineering
- Engineering management
- Construction-driven execution

Lecture Content

Why?

Accidents Safety Layers SIS vs. BPCS Process Safety Time

How?

Reliability modeling HAZOP vs. LOPA BPCS reliability assumptions Case studies results

- 2003/Moo3 voting
- 2002/1002 voting

HAZOP = Hazard and Operability LOPA = Layers of Protection Analysis SIS = Safety Instrumented System BPCS = Basic Process Control System

Accidents Happened (<2000)

Flixborough, UK, 1974

- major explosion and subsequent fire
- 28 fatalities
- over 100 injured

Seveso, Italy, 1976

- release of chemical cloud containing dioxin
- 600 persons evacuated
- 2000 persons treated

Bhopal, India, 1984

- release of toxic cloud
- over 2500 fatalities
- over 100.000 persons affected

Accidents Still Happen (>2000)

AZF (Azote de France) fertilizer factory (Sept 2001)

- Explosion of ammonium nitrate
- 31 death
- Total loss of plant

BP Texas City Refinery (March 2005)

- Explosions and fire in isomerization unit
- 15 death
- 170 injured

BP Deepwater Horizon (April 2010)

- Explosion and well blowout with fire
- 11 death
- Total loss of platform
- Largest ever oil spill in American waters

Accident Causes

Human error

- Design
- Operation
- Maintenance

Failure of

- Utility system
 - power supply, instrument air, cooling water, steam
- Mechanical equipment
 - pump, compressor, reactor mixer, heat exchanger tube rupture
- Piping and auxiliaries
 - corrosion, blockage, check valve or manual valve failure
- Instrumentation & Control system
 - sensors, control loops, alarms, system hardware or software

Combination of factors, in most of the cases

FLUOR_®

Safety System Failure Analysis

Health and Safety Executive (U.K.)

- Analysis of 34 accidents
 - resulted from control or safety system failure
- Causes grouped by phase
- Major contribution: Specifications
 - Incorrect or incomplete

Specifications

- - Specifications 44%
 - Design 15%
 - Installation&Commissioning 6%
 - Operation&Maintenance 15%
 - Changes after Commissioning 20%
- Functional specification (i.e., what the system should do) SIF
- Integrity specification (i.e., how well should do it) SIL

FLUOR_®

SIF = Safety Instrumented Function SIL = Safety Integrity Level

Safety Layers

- Process Control
- Protective Process Control
- Alarm System
- Safety Instrumented System (SIS)

BPCS

- HIPPS
- Mechanical protection
- Fire & Gas System (FGS)
- Bunds, dikes, walls

FLUOR

- Plant and emergency response
- Community emergency response

HIPPS = High Integrity Pressure Protection System

Safety Layers - Example

SIF = Safety Instrumented Function

BPCS vs. SIS

DCS = Distributed Control System / BPCS BPCS = Basic Process Control System ESD = Emergency Shut Down SIS = Safety Instrumented System / ESD

Process Safety Time

PST = Process Safety Time

Redundancy

- Why multiple instruments?
 - Apparently not needed
 - Single instrument is sufficient
- Increased reliability (1002)
 - Two shut-off valves in series
 - One valve fails
 - The other will stop the flow
- Increased availability (2002)
 - Two solenoid valves
 - One solenoid fails
 - The other will supply IA
 - UZV remains open, no disturbance to proces

1002 = One out of two voting system 2002 = Two out of two voting system

Reliability Modeling

- Example 1
 - Failure rate, λ =500 FIT
 - Availability after 10 years

$$A_{(t)} = A_0 \cdot e^{-\lambda t} \quad A_{(10y)} = 95.7\%$$

- Example 2
 - 2 devices, $\lambda_A = \lambda_B$
 - 1002 voting
 - 2002 voting

$$U_{(1002,t)} = U_{A(t)} \cdot U_{B(t)} \qquad A_{(1002,10y)} = 99.8\%$$
$$A_{(2002,t)} = A_{A(t)} \cdot A_{B(t)} \qquad A_{(2002,10y)} = 91.6\%$$

- Example 3
 - MooN voting
 - HFT can fail
 - HFT=N-M

$$P(MooN) = \sum_{k=0}^{N-M} \frac{N!}{k! * (N-k)!} A^k (1-A)^{N-k}$$

FIT = Failures in time (1 billion hours) MooN = M out of N voting system HFT = Hardware Fault Tolerance

Availability

- Availability due to failure & repair
 - Mean Time Between Failures (MTBF)
 - Mean Time of Repair (MTR)
 - Mean Time To Restore (MTTR)
 - Repair
 - Testing
 - Installing
 - Restarting process
- Spurious trips

FLUOR

- Failure in safe position
- Requires process restart
- Mean Time To Fail Spurious (MTTFS)
- Safety system failures:

 $Availability(\%) = \frac{MTBF \cdot 100\%}{MTBF + MTTR}$

HAZOP Features

- Qualitative technique
- Identifies both safety and operability problems
- Assume no problems if process is operated as intended
 - Process controlled within design limits

- BPCS is frequently the cause
- BPCS can be listed as safeguard
- BPCS alarms are frequently safeguards or recommended

Risk tolerability

- Risk of fatality from a car accident in US is about one in 800 years
- Most companies accept as tolerable risk 1 fatality in 10.000 years
- Risk Matrix is a measure of tolerability for a given company
 - indicates consequence severities
 - at different frequencies
- Tolerable: accepted by company and employee
- ALARP
 - cost involved in reducing the risk further would be grossly disproportionate to the benefit
- Inacceptable

Risk matrix

Note: Likelihood A is >=1 and <10 and E is >=10000 Consequence severity 1 is <=10000\$ and 5 is >10.000.000\$

Quantitative risk

Note: Likelihood A is >=1 and <10 and E is >=10000 Consequence severity 1 is <=10000\$ and 5 is >10.000.000\$

SIL = Safety Integrity Level RRF = Risk Reduction Factor

LOPA study

- Multi-discipline team; facilitator, scribe and specialists
- Focus on quantifying the risk identified in HAZOP
- Evaluate the gap between risk without SIS and tolerable risk
- Might recommend additional layers of protection
- Remaining residual risk to be reduced by SIS expressed as:
 - tolerable PFD_{avg} of SIF
 - Risk Reduction Factor

RRF = 1 / PFD_{avg}

FLUOR_®

- **PFD**_{avg} = **Probability of Failure on Demand, average**
- SIF = Safety Instrumented Function
- RRF = Risk Reduction Factor

Independent Protection Layer

Requirements

- Specificity
 - IPL prevents or mitigates the consequences of one hazardous event
 - Multiple causes may initiate action of one IPL
- Independence
 - IPL is independent of the other protection layers associated with the identified danger
- Dependability
 - It can be counted on to do what it was designed to do
- Auditability
 - It is designed to facilitate regular validation

Notes

- An IPL shall meet all four requirements, without exception
- IPL design for that specific scenario (e.g. relief valves have more design cases)

FLUOR_®

SIL Assessment

FLUOR

- Qualitative methods provide SIL as an integer number (e.g. SIL 1, SIL 2, SIL 3)
 - Simple, easy to apply but more conservative (e.g. if RRF=100 then <u>SIL 2</u>)
- Quantitative methods provides both SIL and RRF (e.g. SIL 2 with RRF=300)

LOW DEMAND MODE OF OPERATION						
Safety integrity level (SIL)	PFD _{avg}	Required risk reduction				
4	$\geq 10^{-5} \text{ to} < 10^{-4}$	> 10 000 to ≤ 100 000				
3	$\geq 10^{-4}$ to < 10^{-3}	$> 1\ 000\ to \le 10\ 000$				
2	$\geq 10^{-3}$ to < 10^{-2}	$> 100 \text{ to} \le 1\ 000$				
1	$\geq 10^{-2} \text{ to} < 10^{-1}$	$> 10 \text{ to} \le 100$				

CONTINUOUS MODE OR HIGH DEMAND MODE OF OPERATION					
Safety integrity level (SIL)	Average frequency of dangerous failures (failures per hour)				
4	$\geq 10^{-9} \text{ to} < 10^{-8}$				
3	$\geq 10^{-8} \mathrm{to} < 10^{-7}$				
2	$\geq 10^{-7} \text{ to} < 10^{-6}$				
1	$\geq 10^{-6} \text{ to} < 10^{-5}$				

Sharing BPCS/SIS instruments

It is attractive

- Reduced cost when using less instrumentation
- Better control based on redundant instrumentation
- When covered by client standards or agreed

Not recommended

- Avoid BPCS failure impact on SIS reliability
- Past accidents when a single instrument was shared by BPCS and SIS
- CommonHAZOP vs. LOPA
- cause of failure (e.g. different instruments but same vendor)
- No reliability calculation tools

BPCS vs. SIS

SIS

- Highly reliable typically redundant systems
- Certified for SIL 1 up to SIL 4 applications
- SIS failure rates and calculation well documented
- SIL Verification tool exSILentia software
- Spurious trip rate calculation (MTTFS)

BPCS

- Redundancy is not a requirement
- Certification for safety reliability not required
- Failure rates and modes not available
- Availability based on MTTR and MTTF
- Assumption of an arbitrary RRF=10

	Certificate / Certificat		
exiaa	Zertifikat / 合格証		
•	VEGA 1202050C P0011 C004		
	exida hereby confirms that the:		
The manufacturer may use the mark:	Radiation-based Transmitters PROTRAC 30 Series		
CERTIFIED	VEGA Grieshaber KG Schiltach - Germany		
FC	Have been assessed per the relevant requirements of:		
	IEC 61508 : 2010 Parts 1-7		
L.	and meets requirements providing a level of integrity to:		
2 CAPABL	Systematic Capability: SC 2 (SIL 2 Capable)		
	Random Capability: Type B Element		
rveillance Audit Due	SIL 2 @ HFT = 0; Route 1 _H		
September 1, 2021	PFD _{AVG} and Architecture Constraints must be verified for each application		
	Safety Function: The PROTRAC 30 Series Transmitter will measure the level of the process material within the stated safety accuracy.		
	Application Restrictions: The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.		
ANSI BI Accredited Program	Evaluating Assessor		
#1004	Page 1 of 2		

BPCS vs. SIS – IEC 61511:2016

- Limitations of two layers of protection
 - One or two independent SIF's in the same SIS (SIL 3) can have maximum RRF=10000
 - The maximum risk reduction for a BPCS function is 10
 - Two independent BPCS functions can be claimed in LOPA as per IEC 61511
- A.9.3.1 The BPCS may be identified as IPL
 - When a BPCS is the initiating source, no more than one BPCS protection layer may be claimed
 - When the initiating source is not BPCS failure, no more than two protection layers may be claimed

SIS vs. BPCS Reliability

Source: exSILentia database for SIS

- Yokogawa ProSafe-PLC 1002D
- Honeywell FSC 2004D (QMR)
- ABB AC800M High Integrity SIL 3
- Assumptions for BPCS
 - Certification for safety reliability not required
 - Failure rates and modes generally not available
 - At least equivalent to minimum SIL 2 $\lambda_{DU} = 1.14E-06$ MTBF = 100 yearsPFDavg = 0.01 or RRF = 100 low demand $\lambda_{DU} = 1.00E-06$ MTBF = 110 yearsPFH = 10E-6 (1000 FIT) continuous demand $\lambda_{DU} = 1.00E-06$ MTBF = 114 years
 - Maximum should be less than a SIS (SIL 2) Generic SIL 2 certified PLC (exSILentia)

Assumption of PFH between 200 and 1140 FIT

λ _{DU} = 2.37E-08	MTBF = 4 822 years
λ _{DU} = 9.95E-09	MTBF = 11 465 years
λ _{DU} = 7.24E-10	MTBF = 157 652 years

 $\lambda DU = 2.00E-07$ MTBF = 570 years

Case study – 2003 voting

- 2003 preferred voting
 - High Reliability (SIL 3)
 - High Availability (MTTFS)
- Moo3 in BPCS
 - Analogue transmitters can be continuously monitored
 - Instrument failure and repair without process disruption
 - Alarm availability extremely high (1003 voting)
 - Control based on Moo3 is more reliable
- Limitation
 - BPCS is a valid IPL with RRF=10, or
 - SIS credited as SIL 3 and RRF=10000

Calculations 2003/M003

- SIS Sensors (2003)
 - PT, Yokogawa EJA, E Series & J Series
 - Ti=1 year, Cv=90%, Lt=15 years, β =0.1
- Logic solver

FLUOR

- Yokogawa ProSafe-PLC 1002D
- Ti=1 year, Cv=90%, Lt=10 years

Final elements (1002) β=0.1

- Generic quick exhaust valve:
- Ti=1 year, Cv=98%, Lt=10 years
- Flowserve Norbro SR actuator:
- Ti=1 year, PST=1 month
- Swagelok 60 Series 2 Way

- BPCS Sensors (Moo3)
 - Continuous demand mode!
 - Sensor (Moo3) failure PFH=5.83E-8
- Logic solver
 - No option in exSILentia
 - Generic PLC (SIL 2) λ_{DU} = 200 FIT
 - − BPCS PFH<1/100 years \rightarrow λ_{DU} < 1141 FIT
- Final element (control valve)
 - Generic Globe Valve, λ_{DU} = 1000 FIT
 - Generic Pneumatic Actuator, λ_{DU} = 600 FIT
 - Generic I/P Transducer, λ_{DU} = 2400 FIT
 - Overall PFH=3.11E-6 MTBF=36.7 years

	RRF	PFDavg	MTTFS	SIL PFDavg	SIL AC	SIL SC	Resp. Time [ms]	PFDavg Contrib.	MTTFS Contrib.
SENS	3,570	2.80E-4	2829.85	3	3	3	4000.0	FE US 2%	S 3.9% LS 26.9% FE 69.2%
LS	640,536	1.56E-6	408.84		3	3			
FE	1,924	5.20E-4	158.85		3	0			
SIF	1,248	8.01E-4	109.95		3	0			

Functional FTA 2003/M003

Calculation FTA 2003/M003

Results 2003/Moo3

- Cause in BPCS
- Control valve (PV) failure
- No credit for BPCS
- SIF only protection
 Sensors PFDavg = 2.8E-4
 SIS PFDavg = 1.6E-6
 UZV's PFDavg = 5.2E-4
- Overall $PFD_{avg} = 8.0E-4$

SIL 3 & RRF=1248

- Cause independent on BPCS
- FTA with increased reliability of SIS+BPCS

SIL 3 & RRF=3361 (excl. operator errors)

- Conclusions
- LOPA scenario \rightarrow SIL verification
- Cause likelihood exclusive sensors
- Failure of SIFs shall be excluded
- Use exSILentia / no credit for BPCS

- Conclusions
- BPCS control valve → increased reliability
- BPCS contribution is 3361/1248 = 2.7
- Use a solenoid on control valve
- Use exSILentia / no credit for BPCS
- SIL 3 & RRF= 3255

Case study 1002/2002

- Analyzers
 - Low reliability
 - Used in low SIL applications
 - LOPA requires RRF=100
- Design intent
 - BPCS alarm as 1002
 - Deviation alarm
 - 2002 in SIS / availability
 - SIL calc. / independent
- Question
 - Is it better to be independent?
 - Or to share instruments?

Calculation 1001(SIS) / 1001(BPCS)

- SIS Sensors (1001)
 - SERVOTOUGH Oxydetect 2222
 - Ti=2 year, Cv=91%, Lt=10 years, β =0.1
 - PFD_{avg} = 7.61E-3 RRF = 132
 - MTTFS = 148 years
- Logic solver
 - Honeywell FSC 2004D (QMR)
 - RRF = 835817
- Final elements (1003)
 - Two shut-off valves
 - Control valve with solenoid valve
 - PFD_{avg} = 1.98E-3 RRF = 505
- SIL 2 with RRF = 104

- BPCS sensor (1001)
 - Continuous demand mode!
 - Sensor failure rate 564 FIT
 - Sensor (1001) failure PFH=4.92E-6
 - MTBF = 23 years
- Logic solver with operator action
 - Assumption of λ_{DU} = 200 FIT
 - Operator failure estimated PFH=6.29E-6
- Overall risk reduction
 - BPCS PFH=1.14E-5 or RRF 10
 - SIS demand 1/10

RRF: 104 x 10 = 1040

Calculation 2002(SIS) / 1002(BPCS)

- SIS Sensors (2002)
 - SERVOTOUGH Oxydetect 2222
 - Ti=2 year, Cv=91%, Lt=10 years, β =0.1
 - PFDavg = 1.44E-2 RRF = 69
 - MTTFS = 1490 years
- Logic solver
 - Honeywell FSC 2004D (QMR)
 - RRF = 835817
- Final elements (1003)
 - Two shut-off valves
 - Control valve with solenoid valve
 - PFDavg = 1.98E-2 RRF = 505
- SIL 1 with RRF = 61

- BPCS sensors (1002)
 - Continuous demand mode!
 - Sensor failure rate 564 FIT
 - Sensor (1002) failure PFH=2.3E-6
 - MTBF = 49 years
- Logic solver with operator action
 - Assumption of $\lambda DU = 200$ FIT PF
 - Operator failure estimated PFH=6.29E-6
- BPCS overall protection
 - BPCS PFH=1.14E-5 or RRF 13
 - SIS demand 1/13
 - With SIS overall RRF = 793

Conclusions – sharing instrumentation

- Follow client specifications
 - Do not take credit for BPCS as safeguard
 - Take credit for BPCS, but limit overall RRF to 10000
- Simplify risk assessment
 - Documented in LOPA ToR and agreed with the client
 - Consider only failure of BPCS and control valve as cause
 - Consider failure of shared instruments as initiating event / no protection

Benefits

- Better availability for process control
- Less demand for safety system
- BPCS improving the safety of the plant can be demonstrated

FLUOR_®

